Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic recombination of Xenopus laevis 5 S DNA in bacteria.

Identifieur interne : 002860 ( Ncbi/Merge ); précédent : 002859; suivant : 002861

Genetic recombination of Xenopus laevis 5 S DNA in bacteria.

Auteurs : D. Carroll ; S H Wright ; R S Ajioka ; C E Hussey

Source :

RBID : pubmed:6092642

Descripteurs français

English descriptors

Abstract

The behavior in genetic recombination of Xenopus laevis 5 S DNA has been examined, with particular emphasis on the role of 15-base-pair tandem repeats in the A + T-rich spacer. Fragments of 5 S DNA were introduced into Escherichia coli cells as inserts in the recombination vectors, lambda rva and lambda rvb. Intermolecular recombinants were selected in which, because of properties of the phage vectors, the crossover event must have occurred within the 5 S DNA inserts. Inserts from individual recombinants have been characterized in detail. The effects of varying the number (n) of 15-base-pair repeats and the recombination capabilities of the phage and host have been investigated. In these crosses, unequal crossovers can occur, yielding inserts different in size from the parental inserts. When the number of 15-mers is large (n = 12 or 20), most of the unequal crossovers have occurred within the 15-mers, resulting in an altered n value, although other homologies within the 5 S DNA sequence can also support unequal events. Increasing n in the parental inserts modestly increases the overall frequency of recombination and the percentage of altered inserts. We conclude that, in a bacterial setting, the 15-base-pair repeats stimulate recombination only slightly by allowing alternative registers for heteroduplex formation. The degree of stimulation observed is less than predicted by one simple model.

DOI: 10.1016/0022-2836(84)90137-2
PubMed: 6092642

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:6092642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic recombination of Xenopus laevis 5 S DNA in bacteria.</title>
<author>
<name sortKey="Carroll, D" sort="Carroll, D" uniqKey="Carroll D" first="D" last="Carroll">D. Carroll</name>
</author>
<author>
<name sortKey="Wright, S H" sort="Wright, S H" uniqKey="Wright S" first="S H" last="Wright">S H Wright</name>
</author>
<author>
<name sortKey="Ajioka, R S" sort="Ajioka, R S" uniqKey="Ajioka R" first="R S" last="Ajioka">R S Ajioka</name>
</author>
<author>
<name sortKey="Hussey, C E" sort="Hussey, C E" uniqKey="Hussey C" first="C E" last="Hussey">C E Hussey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1984">1984</date>
<idno type="RBID">pubmed:6092642</idno>
<idno type="pmid">6092642</idno>
<idno type="doi">10.1016/0022-2836(84)90137-2</idno>
<idno type="wicri:Area/PubMed/Corpus">002A96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A96</idno>
<idno type="wicri:Area/PubMed/Curation">002A96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A96</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002940</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002940</idno>
<idno type="wicri:Area/Ncbi/Merge">002860</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic recombination of Xenopus laevis 5 S DNA in bacteria.</title>
<author>
<name sortKey="Carroll, D" sort="Carroll, D" uniqKey="Carroll D" first="D" last="Carroll">D. Carroll</name>
</author>
<author>
<name sortKey="Wright, S H" sort="Wright, S H" uniqKey="Wright S" first="S H" last="Wright">S H Wright</name>
</author>
<author>
<name sortKey="Ajioka, R S" sort="Ajioka, R S" uniqKey="Ajioka R" first="R S" last="Ajioka">R S Ajioka</name>
</author>
<author>
<name sortKey="Hussey, C E" sort="Hussey, C E" uniqKey="Hussey C" first="C E" last="Hussey">C E Hussey</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="1984" type="published">1984</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Bacteriophage lambda (genetics)</term>
<term>Base Composition</term>
<term>Base Sequence</term>
<term>Crossing Over, Genetic</term>
<term>DNA (genetics)</term>
<term>DNA Transposable Elements</term>
<term>DNA, Recombinant</term>
<term>DNA, Ribosomal</term>
<term>Escherichia coli (genetics)</term>
<term>Recombination, Genetic</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (génétique)</term>
<term>ADN recombiné</term>
<term>ADN ribosomique</term>
<term>Animaux</term>
<term>Bactériophage lambda (génétique)</term>
<term>Composition en bases nucléiques</term>
<term>Crossing-over</term>
<term>Escherichia coli (génétique)</term>
<term>Recombinaison génétique</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Xenopus laevis</term>
<term>Éléments transposables d'ADN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteriophage lambda</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN</term>
<term>Bactériophage lambda</term>
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Composition</term>
<term>Base Sequence</term>
<term>Crossing Over, Genetic</term>
<term>DNA Transposable Elements</term>
<term>DNA, Recombinant</term>
<term>DNA, Ribosomal</term>
<term>Recombination, Genetic</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Xenopus laevis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN recombiné</term>
<term>ADN ribosomique</term>
<term>Animaux</term>
<term>Composition en bases nucléiques</term>
<term>Crossing-over</term>
<term>Recombinaison génétique</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées d'acides nucléiques</term>
<term>Xenopus laevis</term>
<term>Éléments transposables d'ADN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The behavior in genetic recombination of Xenopus laevis 5 S DNA has been examined, with particular emphasis on the role of 15-base-pair tandem repeats in the A + T-rich spacer. Fragments of 5 S DNA were introduced into Escherichia coli cells as inserts in the recombination vectors, lambda rva and lambda rvb. Intermolecular recombinants were selected in which, because of properties of the phage vectors, the crossover event must have occurred within the 5 S DNA inserts. Inserts from individual recombinants have been characterized in detail. The effects of varying the number (n) of 15-base-pair repeats and the recombination capabilities of the phage and host have been investigated. In these crosses, unequal crossovers can occur, yielding inserts different in size from the parental inserts. When the number of 15-mers is large (n = 12 or 20), most of the unequal crossovers have occurred within the 15-mers, resulting in an altered n value, although other homologies within the 5 S DNA sequence can also support unequal events. Increasing n in the parental inserts modestly increases the overall frequency of recombination and the percentage of altered inserts. We conclude that, in a bacterial setting, the 15-base-pair repeats stimulate recombination only slightly by allowing alternative registers for heteroduplex formation. The degree of stimulation observed is less than predicted by one simple model.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">6092642</PMID>
<DateCompleted>
<Year>1984</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>178</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1984</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic recombination of Xenopus laevis 5 S DNA in bacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>155-72</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The behavior in genetic recombination of Xenopus laevis 5 S DNA has been examined, with particular emphasis on the role of 15-base-pair tandem repeats in the A + T-rich spacer. Fragments of 5 S DNA were introduced into Escherichia coli cells as inserts in the recombination vectors, lambda rva and lambda rvb. Intermolecular recombinants were selected in which, because of properties of the phage vectors, the crossover event must have occurred within the 5 S DNA inserts. Inserts from individual recombinants have been characterized in detail. The effects of varying the number (n) of 15-base-pair repeats and the recombination capabilities of the phage and host have been investigated. In these crosses, unequal crossovers can occur, yielding inserts different in size from the parental inserts. When the number of 15-mers is large (n = 12 or 20), most of the unequal crossovers have occurred within the 15-mers, resulting in an altered n value, although other homologies within the 5 S DNA sequence can also support unequal events. Increasing n in the parental inserts modestly increases the overall frequency of recombination and the percentage of altered inserts. We conclude that, in a bacterial setting, the 15-base-pair repeats stimulate recombination only slightly by allowing alternative registers for heteroduplex formation. The degree of stimulation observed is less than predicted by one simple model.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carroll</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>S H</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ajioka</LastName>
<ForeName>R S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hussey</LastName>
<ForeName>C E</ForeName>
<Initials>CE</Initials>
<Suffix>Jr</Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>M10027</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM22232</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004251">DNA Transposable Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004274">DNA, Recombinant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010582" MajorTopicYN="N">Bacteriophage lambda</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003434" MajorTopicYN="N">Crossing Over, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004251" MajorTopicYN="N">DNA Transposable Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004274" MajorTopicYN="N">DNA, Recombinant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="Y">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014982" MajorTopicYN="N">Xenopus laevis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1984</Year>
<Month>9</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1984</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">6092642</ArticleId>
<ArticleId IdType="pii">0022-2836(84)90137-2</ArticleId>
<ArticleId IdType="doi">10.1016/0022-2836(84)90137-2</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ajioka, R S" sort="Ajioka, R S" uniqKey="Ajioka R" first="R S" last="Ajioka">R S Ajioka</name>
<name sortKey="Carroll, D" sort="Carroll, D" uniqKey="Carroll D" first="D" last="Carroll">D. Carroll</name>
<name sortKey="Hussey, C E" sort="Hussey, C E" uniqKey="Hussey C" first="C E" last="Hussey">C E Hussey</name>
<name sortKey="Wright, S H" sort="Wright, S H" uniqKey="Wright S" first="S H" last="Wright">S H Wright</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002860 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002860 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:6092642
   |texte=   Genetic recombination of Xenopus laevis 5 S DNA in bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:6092642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021